Universo Científico - Función cuadrática o de segundo grado - Foro

Página 1 de 11
Foro » Departamento de Matemática » Teóricos » Función cuadrática o de segundo grado
Función cuadrática o de segundo grado
23-03-2013, 5:02 AM
Post: #1
Una función cuadrática o de segundo grado es de la forma:
$$ f(x) = a·x^2 + b·x + c, a≠0, (a,b,c)∈ℝ $$

\( (a, b, c) \) reciben el nombre de coeficientes. \( a·x^2 \) se conoce como término principal y \( c \) se conoce como término independiente.

La representación gráfica de toda función cuadrática es una parábola.

¿No estás de acuerdo con lo que escribí? ¡por favor explícame tu punto de vista! :)

· No se resuelven problemas ni se responde a consultas sobre matemática, física ni química por mensaje privado.
· Si utilizas material de este sitio, no olvides citar la fuente.
· Si te sirvió lo que dije, puedes agradecerme aumentado mi reputación.
· Si ven que tengo una falta de ortografía un hechicero lo hizo.
23-03-2013, 5:09 AM
Post: #2
Características generales:

· Raíces:
Las raíces de una función, son los puntos del plano resultantes de la intersección del gráfico con el eje x. Tener en cuenta que no siempre una función cuadrática corta el eje x. Las raíces se pueden calcular igualando el polinomio a cero. Por ejemplo: sea la función \( f(x) = 2·x^2 + 3·x + 4 \), sus raíces se pueden calcular como: \( 2·x^2 + 3·x + 4 = 0 \). Para saber cómo se resuelve la anterior ecuación, ver: ecuación cuadrática o de segundo grado.



· Ordenada en el origen:
La ordenada en el origen de una función, es el punto del plano resultante de la intersección del gráfico con el eje y. Toda ecuación cuadrática tiene una única ordenada en el origen. La ordenada en el origen se puede conocer por simple inspección del polinomio, ya que el término independiente coincide con esta.



· Concavidad:
Si el coeficiente del término principal es un número positivo, la parábola tendrá concavidad positiva, mientras que si es un número negativo, la parábola tendrá concavidad negativa.



· Apertura:
La apertura de la parábola es lo que me permite saber cuan abierta o cuan cerrada está.
Cuanto mayor sea el valor absoluto del coeficiente del término principal, más cerrada estará la parábola.
Cuanto menor sea el valor absoluto del coeficiente del término principal, más abierta estará la parábola.



· Vértice:
El vértice de la parábola es un punto: es el máximo de esta, si tiene concavidad negativa, mientras que es el mínimo si tiene concavidad positiva.

$$ v (v_{x}, v_{y}) $$


Archivo(s) adjunto(s): 4943770.png(42Kb) · 4133523.png(42Kb) · 4907848.png(83Kb) · 5790208.png(22Kb) · 5479872.png(20Kb)

¿No estás de acuerdo con lo que escribí? ¡por favor explícame tu punto de vista! :)

· No se resuelven problemas ni se responde a consultas sobre matemática, física ni química por mensaje privado.
· Si utilizas material de este sitio, no olvides citar la fuente.
· Si te sirvió lo que dije, puedes agradecerme aumentado mi reputación.
· Si ven que tengo una falta de ortografía un hechicero lo hizo.
23-03-2013, 6:56 PM
Post: #3
Expresiones:

· Forma general:
\( f(x) = a·x^2 + b·x + c \)

· Forma factorizada:
\( f(x) = a·(x-\alpha)·(x-\beta) \)

· Forma canónica:
\( f(x) = a·(x-v_{x})^2 + v_{y} \)

Quote
Referencias:
\( (a,b,c)∈ℝ \)
\( a≠0 \)
\( (\alpha, \beta) \) son las raíces del polinomio.
\( v_{x} \) es la abscisa del vértice.
\( v_{y} \) es la ordenada del vértice.

¿No estás de acuerdo con lo que escribí? ¡por favor explícame tu punto de vista! :)

· No se resuelven problemas ni se responde a consultas sobre matemática, física ni química por mensaje privado.
· Si utilizas material de este sitio, no olvides citar la fuente.
· Si te sirvió lo que dije, puedes agradecerme aumentado mi reputación.
· Si ven que tengo una falta de ortografía un hechicero lo hizo.
Foro » Departamento de Matemática » Teóricos » Función cuadrática o de segundo grado
Página 1 de 11
Búscar:


Últimos cinco temas activos...
Tema Foro Autor Respuestas Último mensaje
PENDIENTE Ecuacion circunferencias Problemas sin resolver elva 1 08-03-2016 2:06 AM
Último mensaje: Admin
Geometría analítica en el plano: circunferencia Teóricos Admin 4 18-11-2015 10:57 PM
Último mensaje: joserodriguez0173
PENDIENTE Problema de dinamica, cañón unido a resorte Problemas sin resolver andremn 1 14-11-2015 3:18 PM
Último mensaje: jotazone10
PENDIENTE Ayuda con mi tarea :)), Resuelve la desigualdad Problemas sin resolver spayrro_234 0 30-08-2015 10:24 PM
Último mensaje: spayrro_234
Saludos a todos Presentaciones JOHN 0 02-01-2015 10:45 PM
Último mensaje: JOHN