Universo Científico - Problema de encuentro en MRU (separación) - Foro

Página 1 de 11
Foro » Departamento de Física » Problemas resueltos » Problema de encuentro en MRU (separación)
Problema de encuentro en MRU (separación)
19-04-2013, 11:23 PM
Post: #1
dos ciclistas se mueven en el mismo sentido por una carretera uno lo hace con una velocidad constante de 20 k/h y otro q procura alcanzarlo lo hace con una velocidad de 30k/h
¿cuanto tiempo trancurre antes de q se encuentren si inicialmente su separacion es de 4 kilometros?
19-04-2013, 11:41 PM
Post: #2


Es un problema de encuentro de MRU (velocidad constante en ambos casos). Hay que tener presente que la condición de encuentro es que se encuentren en un mismo lugar al mismo tiempo.

Condición de encuentro:
$$ x_{f1} = x_{f2} $$
$$ t_{f1} = t_{f2} $$

Vamos a calcular el momento de encuentro de ambos móviles, para esto vamos a utilizar la única fórmula de este movimiento y la vamos a despejar.

Móvil 1:
$$ v_{x1} = \frac {\Delta x}{\Delta t} ⇒ \Delta x = v_{x1}·\Delta t ⇒ x_{f} - x_{i} = v_{x1}·(t_{f} - t_{i}) ⇒ x_{f} = v_{x1}·t_{f} $$
Aclaraciones:
· Como ambos móviles parten al mismo tiempo, puedo afirmar que \( t_{i} = 0,0 s \).
· El primer móvil parte desde el origen: \( x_{i} = 0,0 km \).

Reemplazando los datos, resulta en:
$$ x_{f} = 30 \frac {km}{h}·t_{f} $$

Móvil 2:
$$ v_{x1} = \frac {\Delta x}{\Delta t} ⇒ \Delta x = v_{x1}·\Delta t ⇒ x_{f} - x_{i} = v_{x1}·(t_{f} - t_{i}) ⇒ x_{f} - x_{i} = v_{x1}·t_{f} $$
Aclaraciones:
· Como ambos móviles parten al mismo tiempo, puedo afirmar que \( t_{i} = 0,0 s \).

$$ x_{f} - x_{i} = v_{x1}·t_{f} ⇒ x_{f} - 4,0 km = 20 \frac {km}{h}·t_{f} ⇒ x_{f} = 20 \frac {km}{h}·t_{f} + 4,0 km $$

Ahora, vamos a igualar la ecuaciones:
$$ 30 \frac {km}{h}·t_{f} = 20 \frac {km}{h}·t_{f} + 4,0 km ⇒ 30 \frac {km}{h}·t_{f} - 20 \frac {km}{h}·t_{f} = 4,0 km ⇒ 10 \frac {km}{h}·t_{f} = 4,0 km ⇒ t_{f} = \frac {4,0 km}{10 \frac {km}{h}} ⇒ t_{f} = 0,4 h $$

Para hallar el lugar de encuentro, tenemos que reemplazar el tiempo en cualquiera de las dos ecuaciones de los móviles, no importa en cuál, ya que ambas nos darán lo mismo.

Yo voy a reemplazar en la del móvil 1:
$$ x_{f} = 30 \frac {km}{h}·t_{f} ⇒ x_{f} = 30 \frac {km}{h}·0,4 h ⇒ x_{f} = 12 km $$

Quote
Respuesta expresada en unidades del SI (Sistema Internacional de Unidades):
Ambos móviles se encontrarán a los \( 1,2·10^{4} m \) del origen, y a los \( 1,4·10^{3} s \).

Archivo(s) adjunto(s): 1632187.png(20Kb)

¿No estás de acuerdo con lo que escribí? ¡por favor explícame tu punto de vista! :)

· No se resuelven problemas ni se responde a consultas sobre matemática, física ni química por mensaje privado.
· Si utilizas material de este sitio, no olvides citar la fuente.
· Si te sirvió lo que dije, puedes agradecerme aumentado mi reputación.
· Si ven que tengo una falta de ortografía un hechicero lo hizo.
Foro » Departamento de Física » Problemas resueltos » Problema de encuentro en MRU (separación)
Página 1 de 11
Búscar:


Últimos cinco temas activos...
Tema Foro Autor Respuestas Último mensaje
PENDIENTE Ecuacion circunferencias Problemas sin resolver elva 1 08-03-2016 2:06 AM
Último mensaje: Admin
Geometría analítica en el plano: circunferencia Teóricos Admin 4 18-11-2015 10:57 PM
Último mensaje: joserodriguez0173
PENDIENTE Problema de dinamica, cañón unido a resorte Problemas sin resolver andremn 1 14-11-2015 3:18 PM
Último mensaje: jotazone10
PENDIENTE Ayuda con mi tarea :)), Resuelve la desigualdad Problemas sin resolver spayrro_234 0 30-08-2015 10:24 PM
Último mensaje: spayrro_234
Saludos a todos Presentaciones JOHN 0 02-01-2015 10:45 PM
Último mensaje: JOHN